Real-time Detection of Content Polluters in Partially Observable Twitter Networks
نویسندگان
چکیده
Content polluters, or bots that hijack a conversation for political or advertising purposes are a known problem for event prediction, election forecasting and when distinguishing real news from fake news in social media data. Identifying this type of bot is particularly challenging, with state-of-the-art methods utilising large volumes of network data as features for machine learning models. Such datasets are generally not readily available in typical applications which stream social media data for real-time event prediction. In this work we develop a methodology to detect content polluters in social media datasets that are streamed in real-time. Applying our method to the problem of civil unrest event prediction in Australia, we identify content polluters from individual tweets, without collecting social network or historical data from individual accounts. We identify some peculiar characteristics of these bots in our dataset and propose metrics for identification of such accounts. We then pose some research questions around this type of bot detection, including: how good Twitter is at detecting content polluters and how well state-of-the-art methods perform in detecting bots in our dataset.
منابع مشابه
Seven Months with the Devils: A Long-Term Study of Content Polluters on Twitter
The rise in popularity of social networking sites such as Twitter and Facebook has been paralleled by the rise of unwanted, disruptive entities on these networks—including spammers, malware disseminators, and other content polluters. Inspired by sociologists working to ensure the success of commons and criminologists focused on deterring vandalism and preventing crime, we present the first long...
متن کاملA Model for Detecting of Persian Rumors based on the Analysis of Contextual Features in the Content of Social Networks
The rumor is a collective attempt to interpret a vague but attractive situation by using the power of words. Therefore, identifying the rumor language can be helpful in identifying it. The previous research has focused more on the contextual information to reply tweets and less on the content features of the original rumor to address the rumor detection problem. Most of the studies have been in...
متن کاملRobust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملDesign and Test of the Real-time Text mining dashboard for Twitter
One of today's major research trends in the field of information systems is the discovery of implicit knowledge hidden in dataset that is currently being produced at high speed, large volumes and with a wide variety of formats. Data with such features is called big data. Extracting, processing, and visualizing the huge amount of data, today has become one of the concerns of data science scholar...
متن کاملMHIDCA: Multi Level Hybrid Intrusion Detection and Continuous Authentication for MANET Security
Mobile ad-hoc networks have attracted a great deal of attentions over the past few years. Considering their applications, the security issue has a great significance in them. Security scheme utilization that includes prevention and detection has the worth of consideration. In this paper, a method is presented that includes a multi-level security scheme to identify intrusion by sensors and authe...
متن کامل